根据对人和小鼠的相关研究,干扰素对病毒的防御反应主要是通过信号转导和转录激活通路,导致一系列受干扰素调控基因表达,生成多种直接作用于入侵病毒的酶和蛋白质,保护机体免受感染,其中JAK-STAT通路是干扰素介导的信号转导和转录激活的主要方式(Samuel,2001)。JAK为Janus家族的蛋白酪氨酸激酶,包括Jak-1、Jak-2、 Jak-3、 Tyk-2,STAT(signal transducer and activator of transcription)即细胞转导与转录激活因子(包括STAT-1、STAT-2、STAT-3、STAT-4、STAT-5a、STAT-5b、STAT-6),其中Jak-1、Jak-2、 Tyk-2与STAT-1、STAT-2直接参与了干扰素介导的JAK-STAT信号转导通路。JAK-STAT通路具体过程可表示为(周光炎主编,2000;Samuel,2001):(1)首先从受诱导表达的INF-α/β和INF-γ分别与异构二聚体受体INFAR1-INFAR2和INFGR1-INFGR2的胞外区结合开始,由此激活与两种受体胞内区相连的蛋白酪氨酸激酶Jak-1、Tyk-2与Jak-1、Jak-2;(2)STAT-1、STAT-2在Jak-1、Tyk-2催化作用下,使蛋白链特定位置的酪氨酸磷酸化并形成异二聚体,再与干扰素调节因子-9(INF-9)形成三聚体,而两分子的STAT-1在Jak-1、Jak-2作用下形成同源二聚体;(3)形成的三聚体和同源二聚体分别与染色体的ISRE元件和GAS元件结合,从而激活各种抗病毒基因启动子,生成多种抗病毒蛋白,参与机体的病毒防御快速反应。
由干扰素诱导生成的抗病毒蛋白主要包括:(杨业华主编,2000;Samuel,2001)(1)双链RNA依赖性蛋白激酶(PKR,常称为P1/eIF-2α),主要功能为阻断宿主细胞mRNA合成病毒蛋白质;(2)2',5'腺苷酸合成酶(2',5'-oligoadenylate synthetase,OAS),主要功能为激活内源性RNase L,活性RNase L可降解病毒mRNA;(3)腺苷脱氨酶I(adenosine deaminase 1,ADAR1),可将病毒RNA中碱基A修饰为I而阻止病毒蛋白质合成;(4)Mx蛋白(一种GTP结合蛋白),可与病毒核蛋白结合而损伤病毒衣壳蛋白;(5)氮氧化物合成酶(nitric oxide synthase,NOS),可使机体产生NO,NO在免疫防卫中可发挥重要作用。
4、干扰素基因在猪抗病育种中的应用展望
4.1、畜禽抗病力性状的遗传基础 畜群对大多数疾病的抗性与其他重要经济性状同属数量性状,受微效多基因与环境的共同影响(Axford et al.,2000)。研究表明畜禽对多数呼吸道、消化道类疾病的抗病力性状存在加性遗传方差:Lundheim通过估计公畜遗传方差组分,估计瑞典猪群对呼吸道疾病易感性h2为0.14,萎缩性鼻炎易感性h2为0.16(1979);肠道疾病的h2为0.59(1988)。Pryztulski and Porzeczkowska (1980)估计了猪对螺旋体的抗病力h2为0.20-0.21;Bumstead et al.(1991)分析了8个不同鸡的近交系试验对7种不同种球虫、沙门氏杆菌、大肠杆菌、马立克氏病毒、传染性支气管炎病毒以及5种禽白血病病毒的抗性,结果表明,各种近交系对病原的抗性均存在差异,结果表明畜禽抗病力大多受多基因及环境效应共同影响。
尽管数量性状的多基因效应为开展猪特定病原抗病力选育奠定了理论基础,但在育种实践中至今仍存在待以解决的问题,具体表现为:(1)对特定疾病抗性的直接选择所耗费的成本和对生产造成的损失极其巨大;(2)选择对某种病原的抗性可能导致对其它病原的易感性;(3)对特定病原的抗性的间接选择,实质上导致对病原本身生存力的同步正向选择,进而阻碍了畜禽抗病力的选择效果(Gandon et al.,2001)。
因此对畜禽先天的、无病原特异性的综合防御能力—综合抗病力的选择成为畜禽抗病育种研究的重要内容,而寻找控制综合抗病力主效基因(QTL)或遗传标记,是开展畜禽综合抗病力选育重要手段。
4.2、干扰素与抗病力的关系 干扰素强大的抗病毒和多种免疫调节功能,使得干扰素基因有可能成为猪抗病力选育的理想侯选基因。迄今为止,有关猪干扰素基因的遗传多态性与综合抗病力的相关分析的研究仍未见报导。但有关人类疾病与干扰素基因多态性相关分析的研究报道对今后开展猪抗病力选育的研究具一定借鉴作用:如不同IFN-γ基因型与日本国内肾病的易感性显著相关(Masutani et al.,2003);IFN-γ基因存在一与人肺炎易感群有关的单核苷酸标记(Lopez-Maderuelo et al,2003);人对乙肝病毒的易感性与IFN-γ基因表达量差异有关(Ben-Ari et al.,2003);Lio et al.(2002)、Stassen et al.(2002)、Lu et al(2002)也报导了类似研究结果。
此外,大量体内和体外试验表明,猪干扰素对生产具重大威胁的传染病病毒均具有防御和抑制作用。一系列体外试验表明:用IFN-γ处理感染PRRSV(繁殖与呼吸综合征病毒)的猪巨噬细胞,可抑制PRRSV增殖(Bautista & Molitor,1999);用重组interferon-γ处理Marc-145细胞后,可抑制PRRSV野毒株和细胞适应性毒株增殖(Rowland ,2001);猪IFN-α/β能有效抑制口蹄疫病毒的活力(Chinsangaram et al.,1999);:猪重组IFN-γ可抑制感染传染性胃肠炎冠状病毒的猪上皮细胞和肺巨噬细胞中病毒复制(Charley B, et al,1988);猪INF-γ可抑制感染猪瘟病毒的单核细胞和肺巨噬细胞的病毒复制(Esparza et al,1988)。动物体内试验表明,同时注射猪瘟疫苗和干扰素,可增强对猪瘟病毒的防御能力(Suradhat,et al. 2001);感染TGEV的仔猪,可在肠道上皮组织中迅速产生抗TGEV的IFN-α(Riffault et al.,2001)。
声明
来源:互联网
本文地址:http://farm.00-net.com/yz/sy/2006-01-13/117713.html